Data & HPC-driven discovery of novel materials for nanotechnology and sustainable energy

> Kristian S. Thygesen The CAMD section Technical University of Denmark thygesen@fysik.dtu.dk

Electronic structure calculations

What?

Solve Schrödinger's equation for the motion of electrons in a solid/molecule.

$$\left[\frac{\hbar^2}{2m}\nabla^2 + V(\{\boldsymbol{R}_i\};\boldsymbol{x})\right]\Psi_n(\boldsymbol{x}) = E_n\Psi_n(\boldsymbol{x})$$

Why?

The electrons determine everything

- Chemistry (bonds, chemical reactions, ...)
- Thermodynamics (heat capacity, phase diagrams, ...)
- Structure and ion dynamics (phonons, ...)
- Physical properties (magnetism, conductivity, ...)

Electronic structure calculations

What?

Solve Schrödinger's equation for the motion of electrons in a solid/molecule.

$$\left[\frac{\hbar^2}{2m}\nabla^2 + V(\{\boldsymbol{R}_i\};\boldsymbol{x})\right]\Psi_n(\boldsymbol{x}) = E_n\Psi_n(\boldsymbol{x})$$

Why?

The electrons determine everything

- Chemistry (bonds, chemical reactions, ...)
- Thermodynamics (heat capacity, phase diagrams, ...)
- Structure and ion dynamics (phonons, ...)
- Physical properties (magnetism, conductivity, ...)

No parameters. Only laws of nature and fundamental constants. *Ab initio / first-principles*

The open source GPAW code

Enkovaara *et al.* J. Phys.:Cond. Mat. **22** (2010) ← **Review article**

- □ Projector augmented wave (PAW)
- □ Three different basis sets (real space, plane waves, LCAO)
- Efficient parallelization (good scalability up to > 100.000 CPU cores)
- □ Time-dependent DFT (linear response + time propagation)
- □ Many-body perturbation theory
- Phonons and electron-phonon coupling
- □ Advanced magnetic properties
- GPU version under development

Jens Jørgen Mortensen

The Niflheim supercomputer

- CPU cores: 24560
- Peak performance: 1.8 PetaFlops
- Co-funded 1:1 by DTU until 2020
- Capacity/2 year: 350 mio core/h
- Investment: DKK 30M over 6 years

DeiC resources available (2 year grant period):

Center	Unit	Resource
DeiC Interactive HPC - CPU	CPU core/h	14,716,800
DeiC Interactive HPC – GPU	GPU core/h	705,100
DeiC Interactive HPC – Storage	ТВ	1,000
DeiC Throughput HPC	CPU core/h	63,437,500
DeiC Throughput HPC – storage	ТВ	3,900
DeiC Large Memory HPC	CPU core/h	6,377,200
DeiC Large Mem. HPC – Storage	ТВ	930
	1	
LUMI-C	CPU core/h	53,556,000
LUMI-G	GPU core/h	2,789,300
LUMI Storage	тв/н	26,558,800

Photo-catalytic water splitting

 $\mathbf{2} h v + \mathbf{H}_2 \mathbf{O}_{(\text{liq})} \rightarrow \frac{1}{2} \mathbf{O}_{2(\text{gas})} + \mathbf{H}_{2(\text{gas})}$ Efficient water splitting requires an absorber material with a band gap $\sim 2 \text{ eV}$ Minimum energy required = 1.23 eV =Co-catalyst O_2 HOTO-ELECTROCATALY H⁺ H_2O H_{2} METHANOL ETHANOL HYDROGEN HYDROCARBONS AMMONIA

ABS₃ sulphide perovskites

Six most common ABS₃ crystal structures

BaNiO₃, hexagonal (P6₃/mmc)

YScS₂, orthorhombic (Pna2₁)

 $SrZrS_3$, orthorhombic (Pnma) NH_4CdCl_3/Sn_2S_3 (Yellow phase of CsSnl_3)

FePS₃, monoclinic (c12/m1)

 $SrZrS_3$, orthorhombic (Pnma) $GdFeO_3$ (Black phase of CsSnl₃)

PbPS₃, monoclinic (P1c1)

Computational screening

Best candidate materials

formula	$\mathbf{E}_{g}^{GLLB-SC}$	$\mathbf{E}_{g(direct)}^{GLLB-SC}$	\mathbf{E}_{g}^{HSE06}	$m^*{}_h$	m^*_e	prototype
$AlLaS_3$	1.67	1.67	1.47	-0.337	0.489	$SrZrS_3(Y)$
$BaHfS_3$	2.32	2.32	2.20	-0.255	0.414	$SrZrS_3(B)$
$BaZrS_3$	2.25	2.25	2.08	-0.749	0.426	$SrZrS_3(B)$
\mathbf{BiLiS}_3	1.13	1.43	1.08	-0.209	0.455	FePS_3
BiScS_3	2.45	2.64	2.62	-0.318	0.520	$SrZrS_3(Y)$
$BiTlS_3$	1.36	1.98	1.30	-0.636	0.309	FePS_3
HfGeS_3	1.70	1.73	1.68	-0.568	0.256	$SrZrS_3(Y)$
HfPbS_3	2.11	2.24	1.96	-0.396	0.538	$SrZrS_3(Y)$
$HfSnS_3$	1.53	1.57	1.53	-0.408	0.270	$SrZrS_3(Y)$
\mathbf{HfZnS}_{3}	2.03	2.47	1.98	-0.173	0.431	FePS_3
$LaSbS_3$	1.23	1.23	0.99	-0.439	0.167	$SrZrS_3(Y)$
$MgZrS_3$	2.21	2.32	2.06	-0.718	0.779	distorted
$PbZrS_3$	1.68	1.91	1.66	-0.434	0.525	$SrZrS_3(B)$
\mathbf{ScSbS}_3	2.35	2.43	1.99	-0.502	0.258	$SrZrS_3(Y)$
SnZrS_3	1.76	1.98	1.56	-0.488	0.802	$PbPS_3$
$SrZrS_3$	2.49	2.49	2.30	-0.768	0.496	$SrZrS_3(B)$
$TaLiS_3$	1.98	2.00	2.06	-0.755	0.985	FePS_3
$TlScS_3$	1.60	1.76	1.62	-0.377	0.685	$YScS_3$
$YBiS_3$	2.17	2.24	2.04	-0.428	0.488	$SrZrS_3(Y)$
\mathbf{YLaS}_3	1.87	1.87	1.57	-0.509	0.438	$SrZrS_3(Y)$
$ZrBaS_3$	1.69	1.96	1.62	-0.453	0.279	distorted
$ZrBaS_3$	1.79	1.79	1.54	-0.402	0.413	$SrZrS_3(Y)$
$ZrZnS_3$	1.91	1.97	1.87	-0.616	0.427	$FePS_3$

Kuhar, Thygesen, Jacobsen et al. Energy Env. Sci. 10, 2579 (2019)

Synthesis of LaYS₃

Intensity (arb. units)

- XRD confirms the structure
- Optical absorption confirms the band gap of 2.0 eV
- PL confirms direct gap and absence of defects

TaskBlaster: Python framework for workflows

Scaling of TaskBlaster

- Demonstrated scaling of TaskBlaster to the entire LUMI supercomputer (g-partition).
- Running ca. 14000 GPAW-GPU calculations concurrently.
- Not trivial! Experience used to develop a LUMI-compatible version of ASR

- Approx. 10k GPUs
- 375 petaflops (or 1.5 mio. laptops)
- #3 in the world
- Operated by CSC, Finland

Atomically thin two-dimensional materials

Mounet et al. Nature Nanotechn. 13, 246 (2018)

Graphene – the wonder material

Massless particle:

Particle with mass:

Electrons in graphene move as if their mass was zero!

- Almost transparent (absorbs ca 2% light)
- Best electrical conductor
- Strongest material (100 x steel)
- Extremely flexible
- Exotic physics

Nobel Prize in physics 2010

A. Geim

Deep generative models

Artistic style transfer

Natural language processing

Image generation

Boris Eldagsen refuses to receive Sony World Photography Award for this AI-generated image

Deep generative models

Variational autoencoder

Input, x, is encoded as a normal distributions, $N(\mu_x, \sigma_x)$, over latent space

75-

Projection of the space of 2D materials

CAMD section members

Kristian Thygesen Prof. Head of section

Jakob Schiøtz Professor

Karsten Jacobsen Professor

Thomas Olsen Assoc. Professor

Jens Jørgen Mortensen Software developer

Ole Holm Nielsen Senior HPC officer

European Research Council

